Ion channels and their functional role in vascular endothelium.

نویسندگان

  • B Nilius
  • G Droogmans
چکیده

Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors

Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring.  Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...

متن کامل

Functional properties of ion channels and transporters in tumour vascularization.

Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression...

متن کامل

Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels

Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general con...

متن کامل

Endothelium-Dependent Attenuating Effect of Trigonella foenum-graecum on the Contractile Vascular Reactivity of Diabetic Rats

The present study was undertaken to determine whether two-month treatment of streptozotocin (STZ)-diabetic rats with aqueous leaf extract of Trigonella foenum-graecum (TFG 200 mg/kg i.p.) could improve thoracic aortic responsiveness and to evaluate its endothelium dependency. For this purpose, vascular responses to KCl and noradrenaline (NA) were measured. Diabetic state significantly increased...

متن کامل

P 43: The Role of TWIK2 Channels on Immune Cells and its Impact in EAE/ MS Pathophysiology

TWIK2 ion channels (K2P6.1, encoded by a gene named Kcnk6) belong to the family of two-pore domain potassium channels. TWIK2 is also considered as a “silent” channel because of its inability to produce measurable currents in heterologous expression systems and its intracellular retention. It is expressed in different mammalian tissues including lymphoid organs and the vascular syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 81 4  شماره 

صفحات  -

تاریخ انتشار 2001